
On the security of REDOG

Alex Pellegrini

Eindhoven University of Technology

July 16, 2023

with Tanja Lange and Alberto Ravagnani

Codes in the rank metric

Let {α1, . . . , αm} a basis of Fqm over Fq.
Write x ∈ Fqm as x =

∑m
i=1 Xiαi , Xi ∈ Fq.

So x can be represented as (X1, . . . ,Xm) ∈ Fm
q .

Extend to v = (v1, . . . , vn) ∈ Fn
qm as the map Mat : Fn

qm → Fm×n
q

defined by:

v 7→


V11, V21 . . . Vn1

V12, V22 . . . Vn2
...

... . . .
...

V1m, V2m . . . Vnm


The rank weight of v is then wtR(v) := rkq(Mat(v)).
The rank distance between v ,w ∈ Fn

qm is dR := wtR(v − w).

On the security of REDOG Alex Pellegrini (TU/e) 2

Codes in the rank metric

A rank metric [n, k , d]-code C is a k-dimensional Fqm -linear
subspace of Fn

qm with minimum distance

d := min
a,b∈C ,a ̸=b

dR(a, b)

and correction capability ⌊(d − 1)/2⌋.
G is a generator matrix of C if its rows span C .
H is a parity check matrix of C if its rows span the right-kernel
of G .
A very well known class of rank metric codes are Gabidulin codes,
which have d = n − k + 1 and can be efficiently decoded up to
⌊(d − 1)/2⌋ errors.

On the security of REDOG Alex Pellegrini (TU/e) 3

REDOG Specification

▶ Setup: integers (ℓ,m, n, k, r , t, λ), with ℓ < n and
λt ≤ r ≤ ⌊(n − k)/2⌋.

▶ Keygen:
▶ H = (H1 | H2), H2 ∈ GLn−k(Fqm), a parity check matrix of a

[2n − k , n] Gabidulin code, with decoder Φ correcting
r = ⌊(n − k)/2⌋ errors.

▶ HF : F2n−k
qm → Fℓ

qm hash function.
▶ Full rank M ∈ Fℓ×n

qm and isometry P ∈ Fn×n
qm (wrt. the rank

metric).
▶ λ-dimensional subspace Λ ⊂ Fqm and S−1 ∈ GLn−k(Λ).

▶ Public: pk =
(
M,F = MP−1HT

1

(
HT

2

)−1
S
)

▶ Secret: sk = (P,H,S ,Φ).

On the security of REDOG Alex Pellegrini (TU/e) 4

REDOG Specification - cont’d

RECALL: pk =
(
M,F = MP−1HT

1

(
HT
2

)−1
S
)
and

sk = (P,H,S ,Φ).

▶ Encrypt(m ∈ Fℓ
qm , pk)

▶ generate uniformly random e = (e1, e2) ∈ F2n−k
qm with

wtR(e) = t e1 ∈ Fn
qm and e2 ∈ Fn−k

qm .
▶ Compute m′ = m + HF (e).
▶ Send c1 = m′M + e1 and c2 = m′F + e2.

▶ Decrypt((c1, c2), sk)
▶ Compute c ′ = c1P

−1HT
1 − c2S

−1HT
2 .

▶ Decode Φ(c ′) to obtain e′ = (e1P
−1,−e2S

−1) and recover
e = (e1, e2).

▶ Solve m′M = c1 − e1.
▶ Output m = m′ − HF (e).

On the security of REDOG Alex Pellegrini (TU/e) 5

Incorrectness of REDOG’s decryption

Lemma
Let V be a t-dimensional subspace of Fm

q and let S ∈ V s be a
uniformly random s-tuple of elements of V . The probability that
⟨Si | i ∈ {1, . . . s}⟩ = V is at least

1−
t−1∑
i=0

[t
i

]
q
(q−t+i)s .

Proposition

Let (n, k ,m, q, t, λ) be any set of parameters proposed for REDOG.
If e = (e1, e2) ∈ F2n−k

qm with e1 ∈ Fn
qm and e2Fn−k

qm is a uniformly
random error with wtR(e) = t, then wtR(e1) = wtR(e2) = t with
probability ∼ 1.

On the security of REDOG Alex Pellegrini (TU/e) 6

Incorrectness of REDOG’s decryption - cont’d

RECALL: e ′ = (e1P
−1,−e2S

−1).

Theorem
wtR(e

′) > λt = r = ⌊(n − k)/2⌋ with probability ∼ 1.1

Sketch of Proof
By Proposition we can prove that, with probability ∼ 1:

▶ wtR(e1P
−1) = wtR(e1) = t since P is isometry.

▶ wtR(−e2S
−1) = λt.

▶ ⟨Mat(e1P
−1)⟩ ̸⊂ ⟨Mat(−e2S

−1)⟩.
So wtR(e

′) ≥ wtR(−e2S
−1) + 1 = λt + 1.

Remark
Φ decrypts correctly when wtR(e

′) ≤ r = ⌊(n − k)/2⌋.
Theorem above shows that REDOG’s decryption is incorrect and
the system is likely vulnerable to reaction attacks.

1Support Sage code at this URL
On the security of REDOG Alex Pellegrini (TU/e) 7

https://drive.google.com/file/d/1-PRV3kJUSSpdHPvuqzyVqA-zarQLHqCd/view?usp=sharing

Breaking REDOG’s implementation

One way to get around Theorem is to build errors as follows:

Algorithm

1. Pick β1, . . . , βt ∈ Fqm being Fq-linearly independent.

2. Pick random π ∈ Sym(2n − k).

3. Set einit = (β1, . . . , βt , 0, . . . , 0) ∈ F2n−k
qm

4. Output: e = π(einit).

Error vectors in REDOG’s implementation are generated in an
equivalent way to Algorithm. Indeed,
wtR(e

′) = (eP
−1

1 ,−e2S
−1) ≤ λt and can be decoded.

Remark
Algorithm above produces an error vector e such that
wtH(e) = wtR(e) = t. (!!!)

On the security of REDOG Alex Pellegrini (TU/e) 8

The attack on REDOG’s implementation
RECALL: pk = (pk1, pk2) =

(
M,F = MP−1HT

1

(
HT
2

)−1
S
)
.

Idea:

▶ View N = (pk1 | pk2) as the generator matrix of a random
linear [2n − k , ℓ]-code C ′ over Fqm in the Hamming metric.

▶ Error vectors e with wtH(e) = t are generated by Algorithm.

▶ Use Information Set Decoding technique (Prange) to decode
in C ′.

Running the attack2 in Sagemath 9.5 on a Linux Mint virtual
machine we broke the KAT ciphertexts for all the proposed
parameters.

Security parameter Time (sec.)

128 ∼ 8

192 ∼ 82

256 ∼ 232

2Support Sage code at this URL
On the security of REDOG Alex Pellegrini (TU/e) 9

https://drive.google.com/file/d/1c6dmqI2qnvqvI3HbDj8oFTzklPU7lLWN/view?usp=drive_link

General rank metric attack costs recomputed

We believe that attacks costs have been computed incorrectly in
REDOG’s specification.
During transmission, an error vector of rank weight t is added to
the ciphertext, but in the costs computation the value r is used
instead.
For example, parameters for 128 bits security, produce:

Attack Old cost New cost

AGHT 2257 253

GRSH 2147 234

MMJ 2416 2134

REDOG’s keys are quite large compared to other rank metric code
based systems. Increasing the keys to overcome these attacks
would make it impractical.

On the security of REDOG Alex Pellegrini (TU/e) 10

Conclusions

▶ REDOG’s decryption is incorrect, likely exposing it to reaction
attacks and causing a weak choice in the current
implementation to achieve correctness.

▶ Efficient message recovery attack on REDOG’s
implementation.

▶ We believe attacks costs have been wrongly computed.

Thank you for your attention!

On the security of REDOG Alex Pellegrini (TU/e) 11

